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Stability of neural networks and solitons of field theory
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The layers of a feed-forward neural network are interpreted as a cascade of field theories. The stability of the
neural network is interpreted as the topological stability of kink solutions. An explicit example is shown for a
three-class problem with their field theoretical Lagrangian equations.@S1063-651X~99!10112-0#

PACS number~s!: 87.18.Sn, 84.35.1i, 05.45.Yv, 11.10.Ef
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I. INTRODUCTION

Neural networks have been very successfully applied
the pattern recognition of handwritten characters, for
ample, in the postal service and of speech. A neural netw
is a system of layers in which the output of each layer,Oi , is
given by a threshold functiong(x) @1#:

Oi5gS (
j

v i j xj2Q i D , ~1!

where v i j represents the connection strength for an in
node xj of each layer andg(x) is an activation function
which shows a saturation nonlinearity, for instance,

g~x!5tanh~bx!.

For highb ~;10!, g(x) can be regarded as a steplike fun
tion. After the weights have been updated by the well-kno
back-propagation algorithm@2#, using suitable training data
the neural network is stable against fluctuations of the in
data.

Variations in handwriting styles, which are absent in t
training data, can be absorbed by the feed-forward proces
the multilayer neural network. The capacity of abstract
from the training data and of generalizing to handle the d
ference between the training data and new data is one o
most prominent features of neural networks. The neural
work system is stable against variations in input, such
writing styles and different individual characteristics, and
thus able to give correct classifications.

In this paper, we examine this stability from the viewpo
of field theory and its soliton solutions. Each layer of a fee
forward neural network corresponds to a mapping of
space of lower nodes onto the fields of upper nodes.
fields of the lower layer become the space upon which
new fields of the next layer are formulated. This concept
several layers has analogies in string theories where
fields defined over two-dimensional space-time become
space-time upon which the usual gauge and gravitatio
fields are formulated.

II. FIELD THEORETICAL APPROACH
TO FEED-FORWARD NETWORKS

A feed-forward neural network consists of several lay
where the input data of each layer are related to the outpuOi
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as in Eq.~1!. In our field theory model, the value of a nod
on a layer is denoted asf(x), a function of the node value
x of the preceding layer.f is of dimensionm, which is the
number of nodes in the upper layer, while thex is of dimen-
sion n, which is the number of nodes in the lower layer.

We wish to search for an activation function in the fie
theory that saturates at1 ~2! 1 and favors large argument
in order to enhance the stability of the pattern. We start fr
a generic field Lagrangian@3–5#

L52
1

2
“f•“f2V~f! ~2!

and interpret“ as a vector derivative with respect to low
nodes variables. The potentialV(f) is

V~f!5(
i

F S (
j

v i j
2 D S 1

2
f i

42f i
2D G . ~3!

The coefficients

2
1

2 S (
j

v i j
2 D

in the potential are the inverse square of the length scale
the model.

Since the lower nodes have the same signature, we h
not included the kinetic terms in Eq.~2!. The equations of
motion are obtained by the Euler-Lagrange equation

(
j

]

]xj

]f i

]xj
5S (

j
v i j

2 D2~f i
32f i !. ~4!

The potential in Eq.~3! has a double minimum for onef i as
shown in Fig. 1. The value of minima~3! is

2
1

2 S (
j

v i j
2 D ,

where the ground state of this potential is eitherf i51 or
21. Another interesting solution is

f i5tanh~yi !5tanhS (
j

v i j xj2u i D , ~5!

whereSi :(v i j xj2u i50 is the equation for the separatin
plane in the feature spacexj of dimensionsn. The kink so-
7608 © 1999 The American Physical Society
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lution ~5! is 21 on the left side of the separating bounda
and 11 on the right side of the boundary. This solution
stable topologically, since the right-hand side11 would re-
quire an infinite amount of energy to be transformed into
21 state. The shape of the soliton solutions depends on
coefficientsv i j , which are determined by the training da
used in the back-propagation algorithm.

The minimum action principle for equations of motio
requires the integral of Eq.~2! over x to be minimal. This
minimum action may suggest that the sum of the square
errors over large training data with a different input featurx
is required to be minimum for optimized neural networks

It may be appropriate to interpret the field theoretical L
grangian equations from the neural network viewpoint to
derstand the interesting relationship between field theory
the feed-forward neural system. For a multilayer netwo
every nth layer f (n) can be regarded as the inputx for the
(n11)th layer and can be mapped onto the next la
f (n11). The“f term in Eq.~2! is related to the change i
the output layer upon small changes in the input featurex.
The potential~3! is suggested for the output layer to have t
desired classification in the neural network. In the region
feature spacex where classifications are very stable, the fi
term in Eq.~2! and changes of Eq.~3! for small variations
are small, but near the boundary of classification they ar
significant magnitudes.

Thus stability in the classification of the pattern
achieved by the kink solution~5! where the input variation o
the lower planes does not produce changes. Although
soliton solution of the Euler-Lagrange equation is not
unique activation function for general neural network
choosing a soliton solution as an activation function provid
the appropriate topology to the feature spacex and, conse-
quently, always gives a stable feature to the general clas
cation problem that we want to apply.

III. EXAMPLE

To gain a better understanding of the relationship betw
field theory and neural networks, let us observe some gen
features from this explicit numerical work. According to th
argument of the previous section, other functions which

FIG. 1. The potential for the fieldf i which is the node value o
upper layer in the neural network. The minimum of potential
f i51 or 21.
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not satisfy the variation principle for the Lagrangian equ
tion would have nonminimal action. Nonoptimal activatio
functions, for example, stretched step functions, with a lin
range have been observed to have a larger sum of sq
errors.

We will demonstrate the field theoretical approach of ne
ral networks with an example of the three-class problem w
two-dimensional features. The back-propagation algorit
used training data in Fig. 2, and the resulting network in F
3 has parameters

w~1!5S 0.13 1.97

3.22 0.03D , u~1!5S 20.26
20.09D ,

w~2!5S 0.51 2.35

2.22 22.19

22.41 20.59
D , u~2!5S 0.50

2.18
0.60

D .

The weightsw(n) in thenth layer connect the nodexi
(n) of

thenth layer with the nodexj
(n21) of the (n21)th layer. The

shifts u (n) in the nth layer are for the nodei.
The nodesx1

(1) andx2
(1) in the first layer are the fieldsf1

andf2 . The nodesx1
(0) and x2

(0) are regarded asx1 and x2

variables, respectively, for the fieldsf1 and f2 . The field
Lagrangian equation forf1 andf2 is, from Eqs.~2! and~3!,

L52
1

2
~“f1“f11“f2“f2!23.90S 1

2
f1

42f1
2D

210.37S 1

2
f2

42f2
2D . ~6!

The two-dimensionalf1 ,f2 have kink solutions

f15tanh~0.13x111.97x210.26!,

FIG. 2. Training data for the example three-class problem w
two-dimensional input features.
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f25tanh~3.22x110.03x210.09!,

in the variables ofx1 andx2 , and their characteristic separa
planes are shown in Fig. 4. The physical meaning of se
rating planes becomes clear. The three classes of patter
separated by the topology of the planes, and the classif
sample input data only depend on their sign. Near the se
rating plane, the kink solutions have values between21 and
1. Far away from the separating plane boundary, they h
vacuum degeneracy.

Thesef1 ,f2 become the variablesx1 ,x2 for the second
layer, and the three nodesx1

(2) ,x2
(2) ,x3

(2) in the second layer
become the fieldsf1 ,f2 ,f3 . The corresponding Lagrangia
equation in the second layer is

L52
1

2
~“f1“f11“f2“f21“f3“f3!

25.78S 1

2
f1

42f1
2D29.72S 1

2
f2

42f2
2D

26.16S 1

2
f3

42f3
2D . ~7!

The kink solutions are

f15tanh~0.51x112.35x220.50!,

f25tanh~2.22x122.19x222.18!,

f35tanh~22.41x120.59x220.60!,

and their behaviors are shown in Fig. 5.
The test dataA1 , A2 , B1 , B2 , C1 , andC2 for the three

classesA, B, andC and their convergence are shown in F
4. By the kink solutions of Eq.~6!, the fluctuations in the
input features belonging to the same class are removed.
kink solution absorbs the difference in test dataA1 andA2 .
For example,A1 andA2 with the input features~1.0,3.2! and
~3.0,3.0! are mapped onto~1.00,1.00! in Fig. 4. Also by the
kink solutions of Eq.~7!, both A1 and A2 are mapped onto
~0.98,20.97,21.00! close to the ideal value~1.00,21.00,

FIG. 3. The architecture of the neural network for the three-cl
problem with two-dimensional input features. The weightsv and
the thresholdsu are trained by the back-propagation algorithm. T
weightsv (2) between the nodesx(2) and x(1) are defined in 332
matrices, and theu (2) values for the nodex(2) are shown in 331
matrices. Similarly, the weightsv (1) between the nodesx(1) and
x(0) andu (1) are defined in 232 and 231 matrices.
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21.00!. The input fluctuations are removed by the topolo
cal stability and are mapped onto the stable representa
points.

IV. CONCLUSION

We interpreted the generalization power of a neural n
work as the topological stability of the classical solution
field theory. The feed-forward feature of neural networks
modeled as a cascade of field maps. The categorizing me
to use a mapping to field space has been very successful
in explaining the intrinsic discrete feature of neural netwo
layers and, in practical manner, in absorbing fluctuations

s

FIG. 4. The separating planes in the input feature spacesx1
(0)

and x2
(0) are shown. The kink solutions have 1~21! in the right

~left! side of the separating plane. Also, the sample dataA1 , A2 ,
B1 , B2 , C1 , andC2 for the next layer are shown.

FIG. 5. The separating planes in the node valuesx1
(1) andx2

(1) .
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input data features and in giving stability in the pattern cl
sification to the network system. The stability of the syst
against fluctuations is achieved either by a differential eq
tion with negative eigenvalues or by topological stabili
The neural network has been studied from the viewpoin
differential equations. However, the discrete nature of a la
of a neural network is significantly different from the beha
ior of a differential equation. On the other hand, the top
logical stability of neural networks enables us to underst
how input variations are eliminated. The cascade behavio
-

-
.
f

er

-
d
of

neural network repeats the mapping from the space to
field. In each successive layer, the field of the lower la
becomes the space variable and the next field theory b
on the space variable is constructed. A similar construct
has been observed in string field theory@6#. When the input
space is two dimensional, it is called field theory. The fie
in the two dimensions become those space-time variab
and one constructs anomaly-free supergravity models ba
on those space-time variables. The specific choice of a
tential and its solution need to be studied further.
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