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Stability of neural networks and solitons of field theory
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The layers of a feed-forward neural network are interpreted as a cascade of field theories. The stability of the
neural network is interpreted as the topological stability of kink solutions. An explicit example is shown for a
three-class problem with their field theoretical Lagrangian equatj@i€063-651X%99)10112-7

PACS numbgs): 87.18.Sn, 84.35:i, 05.45.Yv, 11.10.Ef

[. INTRODUCTION as in Eq.(1). In our field theory model, the value of a node
on a layer is denoted as(x), a function of the node values
Neural networks have been very successfully applied irx of the preceding layerg is of dimensionm, which is the
the pattern recognition of handwritten characters, for exnumber of nodes in the upper layer, while this of dimen-
ample, in the postal service and of speech. A neural networkion n, which is the number of nodes in the lower layer.
is a system of layers in which the output of each lagr, is We wish to search for an activation function in the field
given by a threshold functiog(x) [1]: theory that saturates at (—) 1 and favors large arguments
in order to enhance the stability of the pattern. We start from

a generic field Lagrangiaf8-5]
OFQ(? wijxj_®i): (1)

1
_ _ L==5V-Vb=V(e) @
where w;; represents the connection strength for an input

node x; of each layer andy(x) is an activation function

which shows a saturation nonlinearity, for instance and interpretV as a vector derivative with respect to lower

nodes variables. The potenti( ¢) is
g(x) =tanh Bx). 1

, _ V(¢)=2 [(2 w?,—)(zﬁ—#”. )

For high 8 (~10), g(x) can be regarded as a steplike func- ' ]

tion. After the weights have been updated by the well-known -

back-propagation algorithii2], using suitable training data, The coefficients

the neural network is stable against fluctuations of the input 1

data. - _( > wﬁ)

Variations in handwriting styles, which are absent in the 217

training data, can be absorbed by the feed-forward process of ) i

the multilayer neural network. The capacity of abstracting'” the potential are the inverse square of the length scales of

from the training data and of generalizing to handle the dif-N€ model. _

ference between the training data and new data is one of the SINce the lower nodes have the same signature, we have

most prominent features of neural networks. The neural nef?0t included the kinetic terms in E¢2). The equations of

work system is stable against variations in input, such a&otion are obtained by the Euler-Lagrange equation

writing styles and different individual characteristics, and is 0 o,

thus able to give correct classifications. — ( > w? ) 2(43— ). (4)

In this paper, we examine this stability from the viewpoint T OXj X T

of field theory and its soliton solutions. Each layer of a feed- o o

forward neural network corresponds to a mapping of thelhe potential in Eq(3) has a double minimum for ong; as

space of lower nodes onto the fields of upper nodes. Th&hown in Fig. 1. The value of minime) is

fields of the lower layer become the space upon which the

new fields of the next layer are formulated. This concept of _ 3(2 w?)

several layers has analogies in string theories where the 2\9

fields defined over two-dimensional space-time become new

space-time upon which the usual gauge and gravitationavhere the ground state of this potential is eitiggr=1 or

fields are formulated. —1. Another interesting solution is
Il. FIELD THEORETICAL APPROACH P =tan|’(yi)=tan>—( E Wi X~ gi) , (5)
TO FEED-FORWARD NETWORKS J

A feed-forward neural network consists of several layersvhere S;: 2 wj;xj— 6;=0 is the equation for the separating
where the input data of each layer are related to the o@put plane in the feature spacg of dimensionsn. The kink so-
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FIG. 1. The potential for the fielgh; which is the node value of X
upper layer in the neural network. The minimum of potential is
¢=1or—1. A Class A
O ClassB

lution (5) is —1 on the left side of the separating boundary
and +1 on the right side of the boundary. This solution is X Class C
stable topologically, since the right-hand si¢ld would re- o _
quire an infinite amount of energy to be transformed into a F!G- 2. Training data for the example three-class problem with
—1 state. The shape of the soliton solutions depends on tH¥0-dimensional input features.
coefficientsw;; , which are determined by the training data
used in the back-propagation algorithm.

The minimum action principle for equations of motion
requires the integral of Eq2) over x to be minimal. This
minimum action may suggest that the sum of the square

errors over large training data with a different input feature il he field th ical h of
is required to be minimum for optimized neural networks. We wi emonstrate the field theoretical approach of neu-
ral networks with an example of the three-class problem with

It may be appropriate to interpret the field theoretical La- . onal f h K . lqorith
grangian equations from the neural network viewpoint to un{Wo-dimensional features. The back-propagation algorithm
sed training data in Fig. 2, and the resulting network in Fig.

derstand the interesting relationship between field theory an

the feed-forward neural system. For a multilayer network,> Nas parameters
every nth layer ¢ can be regarded as the inpufor the

(n+1)th layer and can be mapped onto the next layer W<1>:(
¢ The V¢ term in Eq.(2) is related to the change in

the output layer upon small changes in the input feature

The potential3) is suggested for the output layer to have the 0.51 2.35 0.50
desired classification in the neural network. In the region of w?=| 222 -219| g2=|218]|.
feature spaca where classifications are very stable, the first

not satisfy the variation principle for the Lagrangian equa-
tion would have nonminimal action. Nonoptimal activation
functions, for example, stretched step functions, with a linear
d@nge have been observed to have a larger sum of square
errors.

0.13 1.9 o (—0.26)
3.22 0.03’ -1 —0.09"

term in Eq.(2) and changes of Eq3) for small variations —241 -0.59 0.60
are small, but near the boundary of classification they are of ] ]
significant magnitudes. The weightsv(™ in thenth layer connect the node™ of

Thus stability in the classification of the pattern is thenth layer with the node" ™) of the (n—1)th layer. The
achieved by the kink solutiof5) where the input variation of shifts 8" in the nth layer are for the node
the lower planes does not produce changes. Although the The nodes({) andx{Y in the first layer are the fielde;
soliton solution of the Euler-Lagrange equation is not aand ¢,. The nodes{” andx{®) are regarded as, andx,
Unique activation function for general neural netWOl'kS,Variab|eS, respective|y, for the 'f|e|dﬁ1 and ¢2_ The field

choosing a soliton solution as an activation function provideg agrangian equation fop, and ¢, is, from Egs.(2) and(3),
the appropriate topology to the feature spacand, conse-

guently, always gives a stable feature to the general classifi- 1 1,
cation problem that we want to apply. L==5(V$1V 1TV V) —3.90 5 1~ 41
1 4 2
. EXAMPLE —10.375 b5— ¢3). (6)

To gain a better understanding of the relationship between
field theory and neural networks, let us observe some generdhe two-dimensional); , ¢, have kink solutions
features from this explicit numerical work. According to the
argument of the previous section, other functions which do ¢,=tanh0.13x;+1.97%,+ 0.26),
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FIG. 3. The architecture of the neural network for the three-class (_1.0,_1.0) : §
problem with two-dimensional input features. The weightand = i
the threshold® are trained by the back- propagatlon algorithm. The C2(—3 8, _2 2)..- - i
weights »® between the nodeg’® andx(¥) are defined in %2 B !
matrices, and thé® values for the node(® are shown in X1 T :
matrices. Similarly, the weighte® between the nodes™ and C1(-3.0,-2.4) i
|
I
|

b,=tani(3.22¢; + 0.0, +0.09),

in the variables ok; andx,, and their characteristic separate  FIG. 4. The separating planes in the input feature spais
planes are shown in Fig. 4. The physical meaning of sepaand x are shown. The kink solutions have(%1) in the right
rating planes becomes clear. The three classes of pattern dteft) Slde of the separating plane. Also, the sample dgtaA,,

separated by the topology of the planes, and the classifyinB1. B2, C1, andC, for the next layer are shown.

sample input data only depend on their sign. Near the sepa-

rating plane, the kink solutions have values betwednand  —1.00. The input fluctuations are removed by the topologi-
1. Far away from the separating plane boundary, they haveal stability and are mapped onto the stable representative
vacuum degeneracy. points.

These¢,, ¢, become the variables, ,x, for the second
layer, and the three node$” ,x{* ,x{?) in the second layer
become the fields, , ¢,, ¢5. The corresponding Lagrangian IV. CONCLUSION

equation in the second layer is We interpreted the generalization power of a neural net-

work as the topological stability of the classical solution of

1
L=—=(V$, V1 +V P,V o+ V3V hs) field theory. The feed-forward feature of neural networks is
2 modeled as a cascade of field maps. The categorizing method
1 1 to use a mapping to field space has been very successful both
-5 7E< b1 ¢>1) 9 72( b5 ¢2> in explaining the intrinsic discrete feature of neural network
layers and, in practical manner, in absorbing fluctuations of
1
_6-14544_ 4’%) () o
3
The kink solutions are o) \\@ A (100.1.00)
\ 41 %e
¢1=tanho5lxl+ 235(2_ 050), ‘\ A2(1‘00,1.00) S(Zz)
\ .
b =tanh(2.22,— 2.1%,— 2.18), el S
-2\ .
~N - /
¢3=tanH —2.41x; —0.5%,— 0.60), I ERN s
\ e =~ wl
and their behaviors are shown in Fig. 5. 1 ) /,”’1\ - @
The test datad,, A,, By, B,, C;, andC, for the three A 7 R
classesA, B, andC and their convergence are shown in Fig. Y 7 @ o
4. By the kink solutions of Eq(6), the fluctuations in the Y L7 S1
input features belonging to the same class are removed. Thi 1.00.-1.00 ' ,/ B, (0.90,-1.00)
kink solution absorbs the difference in test dataandA,. G (1:00-1.99 \, - .,1( o
For exampleA,; andA, with the input feature$1.0,3.2 and " /" -1 B,(0.99,-0.98)
(3.0,3.0 are mapped ont@1.00,1.00 in Fig. 4. Also by the G (100100 7

kink solutions of Eq.7), both A; andA, are mapped onto
(0.98,—0.97, —1.00 close to the ideal valuél.00, —1.00, FIG. 5. The separating planes in the node vakigsandx$® .
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input data features and in giving stability in the pattern claseural network repeats the mapping from the space to the
sification to the network system. The stability of the systemfield. In each successive layer, the field of the lower layer
against fluctuations is achieved either by a differential equabecomes the space variable and the next field theory based
tion with negative eigenvalues or by topological stability. on the space variable is constructed. A similar construction
The neural network has been studied from the viewpoint ohas been observed in string field the@6}. When the input
differential equations. However, the discrete nature of a layespace is two dimensional, it is called field theory. The fields
of a neural network is significantly different from the behav-in the two dimensions become those space-time variables,
ior of a differential equation. On the other hand, the topo-and one constructs anomaly-free supergravity models based
logical stability of neural networks enables us to understanan those space-time variables. The specific choice of a po-
how input variations are eliminated. The cascade behavior aential and its solution need to be studied further.
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